# -*- coding: utf-8 -*-
from __future__ import division
import numpy as np
from .constants import SSO
from .conversions import t_from_CT, CT_from_t
from ..utilities import match_args_return
__all__ = ['brineSA_CT',
           'brineSA_t',
           'CT_freezing',
           't_freezing']
# Constants:
c = (0.017947064327968736, -6.076099099929818, 4.883198653547851,
     -11.88081601230542, 13.34658511480257, -8.722761043208607,
     2.082038908808201, -7.389420998107497, -2.110913185058476,
     0.2295491578006229, -0.9891538123307282, -0.08987150128406496,
     0.3831132432071728, 1.054318231187074, 1.065556599652796,
     -0.7997496801694032, 0.3850133554097069, -2.078616693017569,
     0.8756340772729538, -2.079022768390933, 1.596435439942262,
     0.1338002171109174, 1.242891021876471)
T = (0.002519, -5.946302841607319, 4.136051661346983,
     -1.115150523403847e1, 1.476878746184548e1, -1.088873263630961e1,
     2.961018839640730, -7.433320943962606, -1.561578562479883,
     4.073774363480365e-2, 1.158414435887717e-2, -4.122639292422863e-1,
     -1.123186915628260e-1, 5.715012685553502e-1, 2.021682115652684e-1,
     4.140574258089767e-2, -6.034228641903586e-1, -1.205825928146808e-2,
     -2.812172968619369e-1, 1.877244474023750e-2, -1.204395563789007e-1,
     2.349147739749606e-1, 2.748444541144219e-3)
# Adjust for the effects of dissolved air.  Note that
# a = 0.502500117621 / 35.16504
a, b = 0.014289763856964, 0.057000649899720
P = (2.570124672768757e-1, -1.917742353032266e+1, -1.413382858617969e-2,
     -5.427484830917552e-1, -4.126621135193472e-4, -4.176407833276121e-7,
     4.688217641883641e-5, -3.039808885885726e-8, -4.990118091261456e-11,
     -9.733920711119464e-9, -7.723324202726337e-12, 7.121854166249257e-16,
     1.256474634100811e-12, 2.105103897918125e-15, 8.663811778227171e-19)
@match_args_return
[docs]def brineSA_CT(CT, p, saturation_fraction=1):
    """
    Calculates the Absolute Salinity of seawater at the freezing
    temperature.  That is, the output is the Absolute Salinity of seawater,
    with the fraction saturation_fraction of dissolved air, that is in
    equilibrium with ice at Conservative Temperature CT and pressure p.  If the
    input values are such that there is no positive value of Absolute Salinity
    for which seawater is frozen, the output, brineSA_CT, is put equal to -99.
    Parameters
    ----------
    CT : array_like
         Conservative Temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        sea pressure  [dbar]
    saturation_fraction : fraction between 0, 1.  The saturation fraction of
                          dissolved air in seawater.  Default is 0 or
                          completely saturated.
    Returns
    -------
    brine_SA_CT : array_like
                 Absolute Salinity of seawater when it freezes [ g/kg ]
    Examples
    --------
    TODO
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See sections 3.33.
    """
    CT, p, saturation_fraction = np.broadcast_arrays(CT, p,
                                                     saturation_fraction,
                                                     subok=True)
    if np.logical_or(saturation_fraction < 0, saturation_fraction > 1).any():
        raise ValueError('Saturation_fraction MUST be between zero and one.')
    p_r = p * 1e-4
    # Form the first estimate of brine_SA_CT from a polynomial in CT and p_r.
    SA = -(CT + 9 * p_r) / 0.06  # A rough estimate to get the saturated CT.
    SA = np.maximum(SA, 0)
    CTsat = (CT - (1 - saturation_fraction) * 1e-3 * (2.4 - a * SA) *
             (1 + b * (1 - SA / SSO)))
    SA = (P[0] + p * (P[2] + P[4] * CTsat + p * (P[5] + CTsat * (P[7] + P[9] *
          CTsat) + p * (P[8] + CTsat * (P[10] + P[12] * CTsat) + p * (P[11] +
          P[13] * CTsat + P[14] * p)))) + CTsat * (P[1] + CTsat *
          (P[3] + P[6] * p)))
    CT_freezing_zero_SA = (c[0] + p_r * (c[7] + p_r * (c[8] + c[9] * p_r)) -
                           saturation_fraction * 2.4e-3 * (1 + b))
    # Find CT > CT_freezing_zero_SA.  If this is the case, the input values
    # represent seawater that is not frozen (at any positive SA).
    Itw = (CT > CT_freezing_zero_SA)  # tw stands for "too warm"
    SA[Itw] = np.ma.masked
    # Find -SA_cut_off < SA < SA_cut_off, replace the above estimate of SA
    # with one based on (CT_freezing_zero_SA - CT).
    SA_cut_off = 2.5  # This is the band of SA within +- 2.5 g/kg of SA = 0,
                      # which we treat differently in calculating the initial
                      # values of both SA and dCT_dSA.
    Ico = (np.abs(SA) < SA_cut_off)
    Icoa = np.logical_and(SA < 0, SA >= -SA_cut_off)
    SA[Icoa] = 0
    # Find SA < -SA_cut_off, set them to NaN.
    SA[SA < -SA_cut_off] = np.ma.masked
    # Form the first estimate of dCT_dSA, the derivative of CT with respect
    # to SA at fixed p.
    SA_r = 0.01 * SA
    x = np.sqrt(SA_r)
    dCT_dSA_part = (2 * c[1] + x * (3 * c[2] + x * (4 * c[3] + x * (5 * c[4] +
                    x * (6 * c[5] + 7 * c[6] * x)))) + p_r * (2 * c[10] + p_r *
                    (2 * c[12] + p_r * (2 * c[15] + 4 * c[21] * x * x)) + x *
                    x * (4 * c[13] + 4 * c[17] * p_r + 6 * c[19] * x * x) + x *
                    (3 * c[11] + 3 * p_r * (c[14] + c[18] * p_r) + x * x * (5 *
                    c[16] + 5 * c[20] * p_r + 7 * c[22] * x * x))))
    dCT_dSA = 0.5 * 0.01 * dCT_dSA_part - saturation_fraction * 1e-3 * (-a *
              (1 + b * (1 - SA / SSO)) - b * (2.4 - a * SA) / SSO)
    # Now replace the estimate of SA with the one based on
    # (CT_freezing_zero_SA - CT) when (np.abs(SA) < SA_cut_off).
    SA[Ico] = (CT[Ico] - CT_freezing_zero_SA[Ico]) / dCT_dSA[Ico]
    # Begin the modified Newton-Raphson method to solve the root of
    # CT_freezing = CT for SA.
    Number_of_Iterations = 2
    for I_iter in range(0, Number_of_Iterations):
        # CT_freezing temperature function evaluation (the forward function
        # evaluation), the same as CT_freezing(SA, p, saturation_fraction).
        SA_r = 0.01 * SA
        x = np.sqrt(SA_r)
        SA_old = SA
        CT_freeze = (c[0] + SA_r * (c[1] + x * (c[2] + x * (c[3] + x * (c[4] +
                     x * (c[5] + c[6] * x))))) + p_r * (c[7] + p_r * (c[8] +
                     c[9] * p_r)) + SA_r * p_r * (c[10] + p_r * (c[12] + p_r *
                     (c[15] + c[21] * SA_r)) + SA_r * (c[13] + c[17] * p_r +
                     c[19] * SA_r) + x * (c[11] + p_r * (c[14] + c[18] * p_r) +
                     SA_r * (c[16] + c[20] * p_r + c[22] * SA_r))) -
                     saturation_fraction * 1e-3 * (2.4 - a * SA) * (1 + b *
                     (1 - SA / SSO)))
        SA = SA_old - (CT_freeze - CT) / dCT_dSA
        # Half-way point of the modified Newton-Raphson solution method.
        SA_r = 0.5 * 0.01 * (SA + SA_old)  # The mean value of SA and SA_old.
        x = np.sqrt(SA_r)
        dCT_dSA_part = 2 * c[1] + x * (3 * c[2] + x * (4 * c[3] + x * (5 *
                       c[4] + x * (6 * c[5] + 7 * c[6] * x)))) + p_r * (2 *
                       c[10] + p_r * (2 * c[12] + p_r * (2 * c[15] + 4 *
                       c[21] * x * x)) + x * x * (4 * c[13] + 4 * c[17] *
                       p_r + 6 * c[19] * x * x) + x * (3 * c[11] + 3 * p_r *
                       (c[14] + c[18] * p_r) + x * x * (5 * c[16] + 5 * c[20] *
                       p_r + 7 * c[22] * x * x)))
        dCT_dSA = (0.5 * 0.01 * dCT_dSA_part - saturation_fraction * 1e-3 *
                  (-a * (1 + b * (1 - SA / SSO)) - b * (2.4 - a * SA) / SSO))
        SA = SA_old - (CT_freeze - CT) / dCT_dSA
    # The following lines of code, if implemented, calculates the error of
    # this function in terms of Conservative Temperature, CT_error.  With
    # Number_of_Iterations = 1, the maximum error in CT is 2x10^-7 C.  With
    # Number_of_Iterations = 2, the maximum error in CT is 7x10^-15 C, which is
    # the machine precision of the computer.  Number_of_Iterations = 2 is what
    # we recommend.
    #
    # SA_r = 0.01 * SA
    # x = np.sqrt(SA_r)
    # CT_freeze = c[0] + SA_r * (c[1] + x * (c[2] + x * (c[3] + x * (c[4] + x *
    #             (c[5] + c[6] * x))))) + p_r * (c[7] + p_r * (c[8] + c[9] *
    #             p_r)) + SA_r * p_r * (c[10] + p_r * (c[12] + p_r * (c[15] +
    #             c[21] * SA_r)) + SA_r * (c[13] + c[17] * p_r + c[19] * SA_r)
    #             + x * (c[11] + p_r * (c[14] + c[18] * p_r) + SA_r * (c[16] +
    #             c[20] * p_r + c[22] * SA_r))) - saturation_fraction * 1e-3 *
    #             (2.4 - a * SA) * (1 + b * (1 - SA / SSO))
    #
    # CT_error = np.abs(CT_freeze - CT)
    #
    # tmp = np.logical_or(p > 10000, SA > 120
    # out = np.logical_and(tmp, p + SA * 71.428571428571402 > 13571.42857142857)
    # CT_error[out] = np.ma.masked
    brine_SA_CT = SA
    tmp = np.logical_or(p > 10000, SA > 120)
    out = np.logical_and(tmp, p + SA * 71.428571428571402 > 13571.42857142857)
    brine_SA_CT[out] = np.ma.masked
    # If the CT input is too warm, then there is no (positive) value of SA
    # that represents frozen seawater.
    brine_SA_CT[Itw] = -99  # NOTE: Mask these?
    return brine_SA_CT 
@match_args_return
[docs]def brineSA_t(t, p, saturation_fraction=1):
    """
    Calculates the Absolute Salinity of seawater at the freezing temperature.
    That is, the output is the Absolute Salinity of seawater, with the fraction
    saturation_fraction of dissolved air, that is in equilibrium with ice at
    in-situ temperature t and pressure p.  If the input values are such that
    there is no positive value of Absolute Salinity for which seawater is
    frozen, the output, brineSA_t, is put equal to -99.
    Parameters
    ----------
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        sea pressure  [dbar]
    saturation_fraction : fraction between 0, 1.  The saturation fraction of
                          dissolved air in seawater.  Default is 0 or
                          completely saturated.
    Returns
    -------
    brine_SA_t : array_like
                 Absolute Salinity of seawater when it freezes [ g/kg ]
    Examples
    --------
    TODO
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See sections 3.33.
    """
    t, p, saturation_fraction = np.broadcast_arrays(t, p, saturation_fraction,
                                                    subok=True)
    if np.logical_or(saturation_fraction < 0, saturation_fraction > 1).any():
        raise ValueError('Saturation_fraction MUST be between zero and one.')
    p_r = p * 1e-4
    # Form the first estimate of brine_SA_t, called SA here, from a polynomial
    # in CT and p_r.
    SA = -(t + 9 * p_r) / 0.06  # A rough estimate to get the saturated CT.
    SA = np.maximum(SA, 0)
    CT = CT_from_t(SA, t, p)
    CTsat = CT - (1 - saturation_fraction) * 1e-3 * (2.4 - a * SA) * (1 + b *
            (1 - SA / SSO))
    SA = P[0] + p * (P[2] + P[4] * CTsat + p * (P[5] + CTsat * (P[7] +
         P[9] * CTsat) + p * (P[8] + CTsat * (P[10] + P[12] * CTsat) + p *
         (P[11] + P[13] * CTsat + P[14] * p)))) + CTsat * (P[1] + CTsat *
         (P[3] + P[6] * p))
    t_freezing_zero_SA = t_freezing(np.zeros_like(t), p, saturation_fraction)
    # Find t > t_freezing_zero_SA.  If this is the case, the input values
    # represent seawater that is not frozen (at any positive SA).
    Itw = (t > t_freezing_zero_SA)  # Itw stands for "I_too_warm"
    SA[Itw] = np.ma.masked
    # Find -SA_cut_off < SA < SA_cut_off, replace the above estimate of SA
    # with one based on (t_freezing_zero_SA - t).
    SA_cut_off = 2.5  # This is the band of SA within +- 2.5 g/kg of SA = 0,
                      # which we treat differently in calculating the initial
                      # values of both SA and dCT_dSA.
    Ico = (np.abs(SA) < SA_cut_off)
    Icoa = np.logical_and(SA < 0, SA >= -SA_cut_off)
    SA[Icoa] = 0
    # Find SA < -SA_cut_off, set them to masked.
    SA[SA < -SA_cut_off] = np.ma.masked
    # Form the first estimate of dt_dSA, the derivative of t with respect
    # to SA at fixed p, using the coefficients, t0 ... t22 from t_freezing.
    SA_r = 0.01 * SA
    x = np.sqrt(SA_r)
    dt_dSA_part = 2 * T[1] + x * (3 * T[2] + x * (4 * T[3] + x * (5 * T[4] +
    x * (6 * T[5] + 7 * T[6] * x)))) + p_r * (2 * T[10] + p_r * (2 * T[12] +
    p_r * (2 * T[15] + 4 * T[21] * x * x)) + x * x * (4 * T[13] + 4 * T[17] *
    p_r + 6 * T[19] * x * x) + x * (3 * T[11] + 3 * p_r * (T[14] + T[18] *
    p_r) + x * x * (5 * T[16] + 5 * T[20] * p_r + 7 * T[22] * x * x)))
    dt_dSA = 0.5 * 0.01 * dt_dSA_part + saturation_fraction * 1e-3 / 70.33008
    # Now replace the estimate of SA with the one based on
    # (t_freezing_zero_SA - t) when (abs(SA) < SA_cut_off).
    SA[Ico] = (t[Ico] - t_freezing_zero_SA[Ico]) / dt_dSA[Ico]
    # Begin the modified Newton-Raphson method to find the root of
    # t_freeze = t for SA.
    Number_of_Iterations = 5
    for I_iter in range(0, Number_of_Iterations):
        SA_old = SA
        t_freeze = t_freezing(SA_old, p, saturation_fraction)
        SA = SA_old - (t_freeze - t) / dt_dSA
        # Half-way point of the modified Newton-Raphson solution method.
        SA_r = 0.5 * 0.01 * (SA + SA_old)  # Mean value of SA and SA_old.
        x = np.sqrt(SA_r)
        dt_dSA_part = (2 * T[1] + x * (3 * T[2] + x * (4 * T[3] + x * (5 *
                       T[4] + x * (6 * T[5] + 7 * T[6] * x)))) + p_r *
                       (2 * T[10] + p_r * (2 * T[12] + p_r * (2 * T[15] + 4 *
                       T[21] * x * x)) + x * x * (4 * T[13] + 4 * T[17] * p_r +
                       6 * T[19] * x * x) + x * (3 * T[11] + 3 * p_r * (T[14] +
                       T[18] * p_r) + x * x * (5 * T[16] + 5 * T[20] * p_r +
                       7 * T[22] * x * x))))
        dt_dSA = (0.5 * 0.01 * dt_dSA_part + saturation_fraction * 1e-3 /
                  70.33008)
        SA = SA_old - (t_freeze - t) / dt_dSA
    # The following lines of code, if implemented, calculate the error of this
    # function in terms of in-situ temperature.  With Number_of_Iterations = 4,
    # the max error in t is 3x10^-13 C.  With Number_of_Iterations = 5, the max
    # error in t is 2x10^-14 C, which is the machine precision of the computer.
    # Number_of_Iterations = 5 is what we recommend.
    #
    # SA[SA < 0] = np.ma.masked
    #
    # t_freeze = t_freezing(SA, p, saturation_fraction)
    # t_error = np.abs(t_freeze - t)
    # tmp = np.logical_or(p > 10000, SA > 120)
    # out = np.logical_and(tmp, p + SA * 71.428571428571402 > 13571.42857142857)
    # t_error[out] = np.ma.masked
    brine_SA_t = SA
    tmp = np.logical_or(p > 10000, SA > 120)
    out = np.logical_and(tmp, p + SA * 71.428571428571402 > 13571.42857142857)
    brine_SA_t[out] = np.ma.masked
    brine_SA_t[Itw] = -99  # If the t input is too warm, then there is no
                           # (positive) value of SA that represents frozen
                           # seawater.
    return brine_SA_t 
@match_args_return
[docs]def CT_freezing(SA, p, saturation_fraction=1):
    """
    Calculates the Conservative Temperature at which seawater freezes.
    Parameters
    ----------
    SA : array_like
         Absolute Salinity  [g/kg]
    p : array_like
        sea pressure  [dbar]
    saturation_fraction : fraction between 0, 1.  The saturation fraction of
                          dissolved air in seawater.  Default is 0 or
                          completely saturated.
    Returns
    -------
    CT_freezing : array_like
          Conservative Temperature at freezing of
          seawater [:math:`^\circ` C (ITS-90)]
    Examples
    --------
    TODO
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See sections 3.33 and 3.34.
    """
    SA, p, saturation_fraction = np.broadcast_arrays(SA, p,
                                                     saturation_fraction,
                                                     subok=True)
    if (SA < 0).any():
        raise ValueError('SA must be non-negative!')
    if np.logical_or(saturation_fraction < 0, saturation_fraction > 1).any():
        raise ValueError('Saturation_fraction MUST be between zero and one.')
    SA_r = SA * 1e-2
    x = np.sqrt(SA_r)
    p_r = p * 1e-4
    CT_freeze = (c[0] + SA_r * (c[1] + x * (c[2] + x * (c[3] + x * (c[4] +
                 x * (c[5] + c[6] * x))))) + p_r * (c[7] + p_r * (c[8] +
                 c[9] * p_r)) + SA_r * p_r * (c[10] + p_r * (c[12] + p_r *
                 (c[15] + c[21] * SA_r)) + SA_r * (c[13] + c[17] * p_r +
                 c[19] * SA_r) + x * (c[11] + p_r * (c[14] + c[18] * p_r) +
                 SA_r * (c[16] + c[20] * p_r + c[22] * SA_r))))
    # The error of this fit ranges between -5e-4 K and 6e-4 K when compared
    # with the Conservative Temperature calculated from the exact in-situ
    # freezing temperature which is found by a Newton-Raphson iteration of the
    # equality of the chemical potentials of water in seawater and in ice.
    # (Note that the in-situ freezing temperature can be found by this exact
    # method using the function sea_ice_freezingtemperature_si in the SIA
    # library).
    # Adjust for the effects of dissolved air.
    a, b = 0.014289763856964, 0.057000649899720
    # Note that a = 0.502500117621 / 35.16504
    CT_freeze = (CT_freeze - saturation_fraction * (1e-3) *
                 (2.4 - a * SA) * (1 + b * (1 - SA / 35.16504)))
    tmp = np.logical_or(p > 10000, SA > 120)
    out = np.logical_or(tmp, p + SA * 71.428571428571402 > 13571.42857142857)
    CT_freeze[out] = np.ma.masked
    return CT_freeze 
@match_args_return
[docs]def t_freezing(SA, p, saturation_fraction=1):
    """
    Calculates the in-situ temperature at which seawater freezes.
    Parameters
    ----------
    SA : array_like
         Absolute Salinity  [g/kg]
    p : array_like
        sea pressure  [dbar]
    saturation_fraction : fraction between 0, 1.  The saturation fraction of
                          dissolved air in seawater.  Default is 0 or
                          completely saturated.
    Returns
    -------
    t_freezing : array_like
                  in-situ temperature at which seawater freezes
                  [:math:`^\circ` C (ITS-90)]
    Examples
    --------
    TODO
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See sections 3.33 and 3.34.
    """
    # This function, t_freezing, calculates the in-situ freezing temperature,
    # t_freezing, of seawater by first evaluating a polynomial of the
    #  Conservative Temperature at which seawater freezes, CT_freezing, using
    # the GSW function CT_freezing.  The in-situ freezing temperature is then
    # calculated using the GSW function t_from_CT.  However, if one wanted to
    # compute the in-situ freezing temperature directly from a single polynomial
    # expression without first calculating the Conservative Temperature at the
    # freezing point, the following lines of code achieve this.  The error of the
    # following fit is similar to that of the present function, t_freezing, and
    # ranges between -8e-4 K and 3e-4 K when compared with the in-situ freezing
    # temperature evaluated by Newton-Raphson iteration of the equality of the
    # chemical potentials of water in seawater and in ice.  (Note that the
    # in-situ freezing temperature can be found by this exact method using the
    # function sea_ice_freezingtemperature_si in the SIA library).
    #
    # SA_r = SA * 1e-2
    # x = np.sqrt(SA_r)
    # p_r = p * 1e-4
    #
    # t_freeze = T[0] + SA_r * (T[1] + x * (T[2] + x * (T[3] + x * (T[4] + x *
    #            (T[5] + T[6] * x))))) + p_r * (T[7] + p_r * (T[8] + T[9] *
    #            p_r)) + SA_r * p_r * (T[10] + p_r * (T[12] + p_r * (T[15] +
    #            T[21] * SA_r)) + SA_r * (T[13] + T[17] * p_r + T[19] * SA_r) +
    #            x * (T[11] + p_r * (T[14] + T[18] * p_r)  + SA_r * (T[16] +
    #            T[20] * p_r + T[22] * SA_r)))
    #
    # Adjust for the effects of dissolved air
    # t_freezing -= saturation_fraction * (1e-3) * (2.4 - SA / 70.33008)
    SA, p, saturation_fraction = np.broadcast_arrays(SA, p,
                                                     saturation_fraction,
                                                     subok=True)
    if (SA < 0).any():
        raise ValueError('SA must be non-negative!')
    if np.logical_or(saturation_fraction < 0, saturation_fraction > 1).any():
        raise ValueError('Saturation_fraction MUST be between zero and one.')
    CT_freeze = CT_freezing(SA, p, saturation_fraction)
    t_freeze = t_from_CT(SA, CT_freeze, p)
    tmp = np.logical_or(p > 10000, SA > 120)
    out = np.logical_or(tmp, p + SA * 71.428571428571402 > 13571.42857142857)
    t_freeze[out] = np.ma.masked
    return t_freeze 
if __name__ == '__main__':
    import doctest
    doctest.testmod()