# -*- coding: utf-8 -*-
from __future__ import division
import numpy as np
import numpy.ma as ma
from .library import gibbs
from .freezing import t_freezing
from ..utilities import match_args_return, strip_mask
from .conversions import (pt_from_CT, pt_from_t, pt0_from_t, CT_from_t,
                          t_from_CT)
from .constants import Kelvin, db2Pascal, P0, SSO, cp0, R, sfac, M_S
__all__ = ['adiabatic_lapse_rate_from_t',
           'adiabatic_lapse_rate_from_CT',
           'alpha_wrt_CT_t_exact',
           'alpha_wrt_pt_t_exact',
           'alpha_wrt_t_exact',
           'beta_const_CT_t_exact',
           'beta_const_pt_t_exact',
           'beta_const_t_exact',
           'chem_potential_relative_t_exact',
           'chem_potential_salt_t_exact',
           'chem_potential_water_t_exact',
           'cp_t_exact',
#           'deltaSA_from_rho_t_exact',
           'dynamic_enthalpy_t_exact',
           'enthalpy_t_exact',
           'entropy_t_exact',
           'Helmholtz_energy_t_exact',
           'internal_energy_t_exact',
           'isochoric_heat_cap_t_exact',
           'kappa_const_t_exact',
           'kappa_t_exact',
           'osmotic_coefficient_t_exact',
           'osmotic_pressure_t_exact',
           'pot_rho_t_exact',
           'rho_t_exact',
           'SA_from_rho_t',
           'SA_from_rho_t_exact',
           'sigma0_pt0_exact',
           'sound_speed_t_exact',
           'specvol_anom_t_exact',
           'specvol_t_exact',
           't_from_rho_exact',
           't_maxdensity_exact']
n0, n1, n2 = 0, 1, 2
@match_args_return
[docs]def adiabatic_lapse_rate_from_t(SA, t, p):
    """
    Calculates the adiabatic lapse rate of sea water
    Parameters
    ----------
    SA : array_like
        Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        sea pressure [dbar]
      SA & t need to have the same dimensions.
      p may have dimensions 1x1 or Mx1 or 1xN or MxN, where SA & t are MxN.
    Returns
    -------
    adiabatic_lapse_rate : array_like
        adiabatic lapse rate [K Pa:sup:`-1`]
        Note.  The output is in unit of degress Celsius per Pa,
        (or equivilently K/Pa) not in units of K/dbar.
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp.
    """
    return -gibbs(n0, n1, n1, SA, t, p) / (gibbs(n0, n2, n0, SA, t, p)) 
@match_args_return
[docs]def adiabatic_lapse_rate_from_CT(SA, CT, p):
    """
    Calculates the adiabatic lapse rate of sea water from Conservative
    Temperature.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    CT : array_like
         Conservative temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        sea pressure [dbar]
    Returns
    -------
    adiabatic_lapse_rate : array_like
        adiabatic lapse rate [K Pa:sup:`-1`]
        Note.  The output is in unit of degress Celsius per Pa,
        (or equivilently K/Pa) not in units of K/dbar.
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp.
    """
    t = t_from_CT(SA, CT, p)
    return -gibbs(n0, n1, n1, SA, t, p) / gibbs(n0, n2, n0, SA, t, p) 
@match_args_return
[docs]def alpha_wrt_CT_t_exact(SA, t, p):
    """
    Calculates the thermal expansion coefficient of seawater with respect
    to Conservative Temperature.
    Parameters
    ----------
    SA : array_like
        Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    alpha_wrt_CT : array_like
                   thermal expansion coefficient [K :sup:`-1`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.alpha_wrt_CT_t_exact(SA, t, p)
    array([ 0.00032471,  0.00032272,  0.00028118,  0.00017314,  0.00014627,
            0.00012943])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See Eqn. (2.18.3).
    """
    pt0 = pt0_from_t(SA, t, p)
    factor = -cp0 / ((Kelvin + pt0) * gibbs(n0, n2, n0, SA, t, p))
    return factor * (gibbs(n0, n1, n1, SA, t, p) / gibbs(n0, n0, n1, SA, t, p)) 
@match_args_return
[docs]def alpha_wrt_pt_t_exact(SA, t, p):
    """
    Calculates the thermal expansion coefficient of seawater with respect
    to potential temperature, with a reference pressure of zero.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    alpha_wrt_pt : array_like
                   thermal expansion coefficient [K :sup:`-1`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.alpha_wrt_pt_t_exact(SA, t, p)
    array([ 0.00032562,  0.00032355,  0.00028164,  0.00017314,  0.00014623,
            0.00012936])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See Eqn. (2.18.2).
    """
    pt0 = pt0_from_t(SA, t, p)
    factor = gibbs(n0, n2, n0, SA, pt0, 0) / gibbs(n0, n2, n0, SA, t, p)
    return factor * (gibbs(n0, n1, n1, SA, t, p) / gibbs(n0, n0, n1, SA, t, p)) 
@match_args_return
[docs]def alpha_wrt_t_exact(SA, t, p):
    """
    Calculates the thermal expansion coefficient of seawater with respect
    to in situ temperature.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    alpha_wrt_t : array_like
                  thermal expansion coefficient [K :sup:`-1`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.alpha_wrt_t_exact(SA, t, p)
    array([ 0.0003256 ,  0.00032345,  0.00028141,  0.00017283,  0.00014557,
            0.00012836])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See Eqn. (2.18.1)
    .. [2] McDougall, T.J., D.R. Jackett and F.J. Millero, 2010: An algorithm
       for estimating Absolute Salinity in the global ocean. Submitted to Ocean
       Science. A preliminary version is available at Ocean Sci. Discuss.,
       6, 215-242.
    """
    return gibbs(n0, n1, n1, SA, t, p) / gibbs(n0, n0, n1, SA, t, p) 
@match_args_return
[docs]def beta_const_CT_t_exact(SA, t, p):
    """
    Calculates the saline (i.e. haline) contraction coefficient of seawater
    at constant Conservative Temperature.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    beta_const_CT : array_like
                    saline contraction coefficient [kg g :sup:`-1`]
    See Also
    --------
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.beta_const_CT_t_exact(SA, t, p)
    array([ 0.00071749,  0.00071765,  0.00072622,  0.00075051,  0.00075506,
            0.00075707])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See Eqn. (2.19.3)
    """
    # TODO: gsw-v3.04 implements a shorter gibbs.  The results seems similar.
    pt0 = pt0_from_t(SA, t, p)
    factora = (gibbs(n1, n1, n0, SA, t, p) - gibbs(n1, n0, n0, SA, pt0, 0) /
               (Kelvin + pt0))
    factor = (factora / (gibbs(n0, n0, n1, SA, t, p) *
              gibbs(n0, n2, n0, SA, t, p)))
    return (gibbs(n0, n1, n1, SA, t, p) * factor -
            gibbs(n1, n0, n1, SA, t, p) / gibbs(n0, n0, n1, SA, t, p)) 
@match_args_return
[docs]def beta_const_pt_t_exact(SA, t, p):
    """
    Calculates the saline (i.e. haline) contraction coefficient of seawater
    at constant potential temperature with a reference pressure of 0 dbar.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    beta_const_pt : array_like
                    saline contraction coefficient [kg g :sup:`-1`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.beta_const_pt_t_exact(SA, t, p)
    array([ 0.00073112,  0.00073106,  0.00073599,  0.00075375,  0.00075712,
            0.00075843])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See Eqn. (2.19.2)
    """
    # NOTE: The original Matlab toolbox re-implement some code here.  Why?
    pt0 = pt0_from_t(SA, t, p)
    factora = gibbs(n1, n1, n0, SA, t, p) - gibbs(n1, n1, n0, SA, pt0, 0)
    factor = (factora / (gibbs(n0, n0, n1, SA, t, p) *
              gibbs(n0, n2, n0, SA, t, p)))
    return (gibbs(n0, n1, n1, SA, t, p) * factor -
            gibbs(n1, n0, n1, SA, t, p) / gibbs(n0, n0, n1, SA, t, p)) 
@match_args_return
[docs]def beta_const_t_exact(SA, t, p):
    """
    Calculates the saline (i.e. haline) contraction coefficient of seawater
    at constant in situ temperature.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    beta_const_t : array_like
                   saline contraction coefficient [kg g :sup:`-1`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.beta_const_t_exact(SA, t, p)
    array([ 0.00073112,  0.00073107,  0.00073602,  0.00075381,  0.00075726,
            0.00075865])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See Eqn. (2.19.1)
    """
    return -gibbs(n1, n0, n1, SA, t, p) / gibbs(n0, n0, n1, SA, t, p) 
@match_args_return
[docs]def chem_potential_relative_t_exact(SA, t, p):
    """
    Calculates the chemical potential of water in seawater.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    chem_potential_relative : array_like
                              relative chemical potential [J g:sup:`-1`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.chem_potential_relative_t_exact(SA, t, p)
    array([ 79.4254481 ,  79.25989214,  74.69154859,  65.64063719,
            61.22685656,  57.21298557])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
      UNESCO (English), 196 pp.
    """
    return gibbs(n1, n0, n0, SA, t, p) 
@match_args_return
[docs]def chem_potential_salt_t_exact(SA, t, p):
    """
    Calculates the chemical potential of salt in seawater.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    chem_potential_salt : array_like
        chemical potential of salt in seawater [J kg :sup:`-1`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.chem_potential_salt_t_exact(SA, t, p)
    array([ 70.87988696,  71.25180659,  69.58756845,  65.00656941,
            64.56242337,  64.76842002])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See section 2.9.
    """
    return (chem_potential_relative_t_exact(SA, t, p) +
            chem_potential_water_t_exact(SA, t, p)) 
@match_args_return
[docs]def chem_potential_water_t_exact(SA, t, p):
    """
    Calculates the chemical potential of water in seawater.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    chem_potential_water : array_like
                           chemical potential of water in seawater [J/g]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.chem_potential_water_t_exact(SA, t, p)
    array([-8.54556115, -8.00808555, -5.10398014, -0.63406778,  3.3355668 ,
            7.55543445])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp.
    """
    SA, t, p, mask = strip_mask(SA, t, p)
    # FIXME: Copy from gibbs.
    x2 = sfac * SA
    x = np.sqrt(x2)
    y = t * 0.025
    z = p * 1e-4  # Pressure (p) is sea pressure in units of dbar.
    g03_g = (101.342743139674 + z * (100015.695367145 +
             z * (-2544.5765420363 + z * (284.517778446287 +
             z * (-33.3146754253611 + (4.20263108803084 -
             0.546428511471039 * z) * z)))) +
             y * (5.90578347909402 + z * (-270.983805184062 +
             z * (776.153611613101 + z * (-196.51255088122 +
             (28.9796526294175 - 2.13290083518327 * z) * z))) +
             y * (-12357.785933039 + z * (1455.0364540468 +
             z * (-756.558385769359 + z * (273.479662323528 +
             z * (-55.5604063817218 + 4.34420671917197 * z)))) +
             y * (736.741204151612 + z * (-672.50778314507 +
             z * (499.360390819152 + z * (-239.545330654412 +
             (48.8012518593872 - 1.66307106208905 * z) * z))) +
             y * (-148.185936433658 + z * (397.968445406972 +
             z * (-301.815380621876 + (152.196371733841 -
             26.3748377232802 * z) * z)) +
             y * (58.0259125842571 + z * (-194.618310617595 +
             z * (120.520654902025 + z * (-55.2723052340152 +
             6.48190668077221 * z))) +
             y * (-18.9843846514172 + y * (3.05081646487967 -
             9.63108119393062 * z) +
             z * (63.5113936641785 + z * (-22.2897317140459 +
             8.17060541818112 * z)))))))))
    g08_g = x2 * (1416.27648484197 +
        x * (-2432.14662381794 + x * (2025.80115603697 +
        y * (543.835333000098 + y * (-68.5572509204491 +
        y * (49.3667694856254 + y * (-17.1397577419788 +
        2.49697009569508 * y))) - 22.6683558512829 * z) +
        x * (-1091.66841042967 - 196.028306689776 * y +
        x * (374.60123787784 - 48.5891069025409 * x +
        36.7571622995805 * y) + 36.0284195611086 * z) +
        z * (-54.7919133532887 + (-4.08193978912261 -
        30.1755111971161 * z) * z)) +
        z * (199.459603073901 + z * (-52.2940909281335 +
        (68.0444942726459 - 3.41251932441282 * z) * z)) +
        y * (-493.407510141682 + z * (-175.292041186547 +
        (83.1923927801819 - 29.483064349429 * z) * z) +
        y * (-43.0664675978042 + z * (383.058066002476 +
        z * (-54.1917262517112 + 25.6398487389914 * z)) +
        y * (-10.0227370861875 - 460.319931801257 * z + y *
        (0.875600661808945 + 234.565187611355 * z))))) +
        y * (168.072408311545))
    g_SA_part = (8645.36753595126 +
        x * (-7296.43987145382 + x * (8103.20462414788 +
        y * (2175.341332000392 + y * (-274.2290036817964 +
        y * (197.4670779425016 + y * (-68.5590309679152 +
        9.98788038278032 * y))) - 90.6734234051316 * z) +
        x * (-5458.34205214835 - 980.14153344888 * y +
        x * (2247.60742726704 - 340.1237483177863 * x +
        220.542973797483 * y) + 180.142097805543 * z) +
        z * (-219.1676534131548 + (-16.32775915649044 -
        120.7020447884644 * z) * z)) +
        z * (598.378809221703 + z * (-156.8822727844005 +
        (204.1334828179377 - 10.23755797323846 * z) * z)) +
        y * (-1480.222530425046 + z * (-525.876123559641 +
        (249.57717834054571 - 88.449193048287 * z) * z) +
        y * (-129.1994027934126 + z * (1149.174198007428 +
        z * (-162.5751787551336 + 76.9195462169742 * z)) +
        y * (-30.0682112585625 - 1380.9597954037708 * z + y *
        (2.626801985426835 + 703.695562834065 * z))))) +
        y * (1187.3715515697959))
    chem_potential_water = g03_g + g08_g - 0.5 * sfac * SA * g_SA_part
    # V3.03: convert from J/kg to J/g.
    # See section 2.9 of TEOS-10 manual.
    chem_potential_water *= 1e-3
    return ma.array(chem_potential_water, mask=mask, copy=False) 
@match_args_return
[docs]def cp_t_exact(SA, t, p):
    """
    Calculates the isobaric heat capacity of seawater.
    Parameters
    ----------
    SA : array_like
        Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    cp_t_exact : array_like
        heat capacity of seawater [J kg :sup:`-1` K :sup:`-1`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.cp_t_exact(SA, t, p)
    array([ 4002.88800396,  4000.98028393,  3995.54646889,  3985.07676902,
            3973.59384348,  3960.18408479])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp.
    """
    return -(t + Kelvin) * gibbs(n0, n2, n0, SA, t, p) 
#@match_args_return
#def deltaSA_from_rho_t_exact(rho, SP, t, p):
#    pass
@match_args_return
[docs]def dynamic_enthalpy_t_exact(SA, t, p):
    """
    Calculates the dynamic enthalpy of seawater from Absolute Salinity, in
    situ temperature and pressure.  Dynamic enthalpy was defined by Young
    (2010) as the difference between enthalpy and potential enthalpy. Note that
    this function uses the full TEOS-10 Gibbs function (i.e. the sum of the
    IAPWS-09 and IAPWS-08 Gibbs functions, see the TEOS-10 Manual, IOC et al.
    (2010)).
    Parameters
    ----------
    SA : array_like
        Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    dynamic_enthalpy_t_exact : array_like
        dynamic enthalpy [J :sup:`-1`]
    Examples
    --------
    TODO
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp.
    .. [2] Young, W.R., 2010: Dynamic enthalpy, Conservative Temperature, and
       the seawater. Boussinesq approximation. Journal of Physical
       Oceanography, 40, 394-400.
    """
    CT = CT_from_t(SA, t, p)
    return enthalpy_t_exact(SA, t, p) - cp0 * CT 
@match_args_return
[docs]def enthalpy_t_exact(SA, t, p):
    """
    Calculates the specific enthalpy of seawater.
    The specific enthalpy of seawater :math:`h` is given by:
    .. math::
        h(SA, t, p) = g + (T_0 + t)\eta =
                      g - (T_0 + t) \frac{\partial g}{\partial T}\Big|_{SA,p}
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    enthalpy : array_like
               specific enthalpy [J kg :sup:`-1`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.enthalpy(SA, t, p)
    array([ 115006.17814391,  113989.54266878,   92276.22539967,
             43390.30953352,   33323.12790127,   27290.12626901])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See appendix A.11.
    """
    return (gibbs(n0, n0, n0, SA, t, p) -
            (t + Kelvin) * gibbs(n0, n1, n0, SA, t, p)) 
@match_args_return
[docs]def entropy_t_exact(SA, t, p):
    """
    Calculates specific entropy of seawater.
    The specific entropy of seawater :math:`\eta` is given by:
    .. math::
        \eta(SA, t, p) = -g_T = \frac{\partial g}{\partial T}\Big|_{SA,p}
    When taking derivatives with respect to *in situ* temperature, the symbol
    :math:`T` will be used for temperature in order that these derivatives not
    be confused with time derivatives.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    entropy : array_like
              specific entropy [J kg :sup:`-1` K :sup:`-1`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.entropy_t_exact(SA, t, p)
    array([ 400.38942528,  395.43817843,  319.8664982 ,  146.79088159,
             98.64734087,   62.79150873])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp.
    """
    return -gibbs(n0, n1, n0, SA, t, p) 
@match_args_return
[docs]def Helmholtz_energy_t_exact(SA, t, p):
    """
    Calculates the Helmholtz energy of seawater.
    The specific Helmholtz energy of seawater :math:`f` is given by:
    .. math::
        f(SA, t, p) = g - (p + P_0) \nu =
                      g - (p + P_0) \frac{\partial g}{\partial P}\Big|_{SA,T}
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    Helmholtz_energy : array_like
                       Helmholtz energy [J kg :sup:`-1`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.Helmholtz_energy_t_exact(SA, t, p)
    array([-5985.58288209, -5830.81845224, -3806.96617841,  -877.66369421,
            -462.17033905,  -245.50407205])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See section 2.13.
    """
    return (gibbs(n0, n0, n0, SA, t, p) -
            (db2Pascal * p + P0) * gibbs(n0, n0, n1, SA, t, p)) 
@match_args_return
[docs]def internal_energy_t_exact(SA, t, p):
    """
    Calculates the Helmholtz energy of seawater.
    The specific internal energy of seawater :math:`u` is given by:
    .. math::
        u(SA, t, p) = g + (T_0 + t)\eta - (p + P_0)\nu =
                      g - (T_0 + t)\frac{\partial g}{\partial T}\Big|_{SA,p} -
                          (p + P_0)\frac{\partial g}{\partial P}\Big|_{SA,T}
    where :math:`T_0` is the Celsius zero point, 273.15 K and
    :math:`P_0` = 101 325 Pa is the standard atmosphere pressure.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    internal_energy (u) : array_like
                          specific internal energy [J kg :sup:`-1`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.internal_energy_t_exact(SA, t, p)
    array([ 114906.23847309,  113426.57417062,   90860.81858842,
             40724.34005719,   27162.66600185,   17182.50522667])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See Eqn. (2.11.1)
    """
    return (gibbs(n0, n0, n0, SA, t, p) -
            (Kelvin + t) * gibbs(n0, n1, n0, SA, t, p) -
            (db2Pascal * p + P0) * gibbs(n0, n0, n1, SA, t, p)) 
@match_args_return
[docs]def isochoric_heat_cap_t_exact(SA, t, p):
    """
    Calculates the isochoric heat capacity of seawater.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    isochoric_heat_cap : array_like
                         isochoric heat capacity [J kg :sup:`-1` K :sup:`-1`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.isochoric_heat_cap_t_exact(SA, t, p)
    array([ 3928.13708702,  3927.27381633,  3941.36418525,  3966.26126146,
            3960.50903222,  3950.13901342])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See section 2.21.
    """
    return (-(Kelvin + t) * (gibbs(n0, n2, n0, SA, t, p) -
            gibbs(n0, n1, n1, SA, t, p) ** 2 / gibbs(n0, n0, n2, SA, t, p))) 
@match_args_return
[docs]def kappa_const_t_exact(SA, t, p):
    """
    Calculates isothermal compressibility of seawater at constant in situ
    temperature.
    .. math::
        \kappa^t(SA, t, p) =
                       \rho^{-1}\frac{\partial \rho}{\partial P}\Big|_{SA,T} =
                       -\nu^{-1}\frac{\partial \nu}{\partial P}\Big|_{SA,T} =
                       -\frac{g_{PP}}{g_P}
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    kappa : array_like
            Isothermal compressibility [Pa :sup:`-1`]
    Notes
    -----
    This is the compressibility of seawater at constant in situ temperature.
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.kappa_const_t_exact(SA, t, p)
    array([  4.19071646e-10,   4.18743202e-10,   4.22265764e-10,
             4.37735100e-10,   4.40373818e-10,   4.41156577e-10])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See Eqn. (2.15.1)
    """
    return -gibbs(n0, n0, n2, SA, t, p) / gibbs(n0, n0, n1, SA, t, p) 
@match_args_return
[docs]def kappa_t_exact(SA, t, p):
    """
    Calculates the isentropic compressibility of seawater.
    When the entropy and Absolute Salinity are held constant while the pressure
    is changed, the isentropic and isohaline compressibility
    :math:`kappa` is obtained:
    .. math::
        \kappa(SA, t, p) =
                   \rho^{-1}\frac{\partial \rho}{\partial P}\Big|_{SA,\eta} =
                   -\nu^{-1}\frac{\partial \nu}{\partial P}\Big|_{SA,\eta} =
                   \rho^{-1}\frac{\partial \rho}{\partial P}\Big|_{SA,\theta} =
                   -\nu^{-1}\frac{\partial \nu}{\partial P}\Big|_{SA,\theta} =
                   -\frac{ (g_{TP}^2 - g_{TT} g_{PP} ) }{g_P g_{TT}}
    The isentropic and isohaline compressibility is sometimes called simply the
    isentropic compressibility (or sometimes the "adiabatic compressibility"),
    on the unstated understanding that there is also no transfer of salt during
    the isentropic or adiabatic change in pressure.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    kappa : array_like
            Isentropic compressibility [Pa :sup:`-1`]
    Notes
    -----
    The output is Pascal and not dbar.
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.kappa_t_exact(SA, t, p)
    array([  4.11245799e-10,   4.11029072e-10,   4.16539558e-10,
             4.35668338e-10,   4.38923693e-10,   4.40037576e-10])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See Eqns. (2.16.1) and the row for kappa in
       Table P.1 of appendix P
    """
    return ((gibbs(n0, n1, n1, SA, t, p) ** 2 - gibbs(n0, n2, n0, SA, t, p) *
            gibbs(n0, n0, n2, SA, t, p)) / (gibbs(n0, n0, n1, SA, t, p) *
            gibbs(n0, n2, n0, SA, t, p))) 
@match_args_return
[docs]def osmotic_coefficient_t_exact(SA, t, p):
    """
    Calculates the osmotic coefficient of seawater.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    osmotic_coefficient : array_like
                          osmotic coefficient of seawater [unitless]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.osmotic_coefficient_t_exact(SA,t , p)
    array([ 0.90284718,  0.90298624,  0.90238866,  0.89880927,  0.89801054,
            0.89767912])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp.
    """
    SA = np.maximum(SA, 0)
    k = M_S / R
    part = k * (1000 - SA) / (Kelvin + t)
    x2 = sfac * SA
    x = np.sqrt(x2)
    y = t * 0.025
    # Note that the input pressure (p) is sea pressure in units of dbar.
    z = p / db2Pascal
    oc = (7.231916621570606e1, 1.059039593127674e1, -3.025914794694813e1,
          5.040733670521486e1, -4.074543321119333e1, 1.864215613820487e1,
          -3.022566485046178, -6.138647522851840, 1.353207379758663e1,
          -7.316560781114737, 1.829232499785750, -5.358042980767074e-1,
          -1.705887283375562, -1.246962174707332e-1, 1.228376913546017,
          1.089364009088042e-2, -4.264828939262248e-1, 6.213127679460041e-2,
          2.481543497315280, -1.363368964861909, -5.640491627443773e-1,
          1.344724779893754, -2.180866793244492, 4.765753255963401,
          -5.726993916772165, 2.918303792060746, -6.506082399183509e-1,
          -1.015695507663942e-1, 1.035024326471108, -6.742173543702397e-1,
          8.465642650849419e-1, -7.508472135244717e-1, -3.668086444057845e-1,
          3.189939162107803e-1, -4.245629194309487e-2)
    tl = (oc[0] + oc[1] * y + x * (oc[2] + x * (oc[3] + x * (oc[4] + x *
         (oc[5] + oc[6] * x))) + y * (oc[7] + x * (oc[8] + x *
         (oc[9] + oc[10] * x)) + y * (oc[11] + oc[12] * x + y * (oc[13] +
         oc[14] * x + y * (oc[15] + x * (oc[16] + oc[17] * y))))) + z *
         (oc[18] + x * (oc[19] + oc[20] * y + oc[21] * x) + y * (oc[22] + y *
         (oc[23] + y * (oc[24] + oc[25] * y))) + z * (oc[26] + oc[27] * x + y *
         (oc[28] + oc[29] * y) + z * (oc[30] + oc[31] * x + y * (oc[32] +
         oc[33] * y) + oc[34] * z)))))
    return tl * part 
@match_args_return
[docs]def osmotic_pressure_t_exact(SA, t, pw):
    """
    Calculates the osmotic pressure of seawater.
    Parameters
    ----------
    SA : array_like
        Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    pw : array_like
        sea pressure of the pure water side [dbar]
    Returns
    -------
    osmotic_pressure_t_exact : array_like
        dynamic osmotic pressure of seawater [dbar]
    Examples
    --------
    TODO
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See section 3.41.
    """
    SA = np.maximum(SA, 0)
    gibbs_pure_water = gibbs(0, 0, 0, 0, t, pw)
    # Initial guess of p, in dbar.
    p = pw + 235.4684
    # Initial guess of df/dp.
    df_dp = -db2Pascal * (gibbs(n0, n0, n1, SA, t, p) -
                          SA * gibbs(n1, n0, n1, SA, t, p))
    for Number_of_iterations in range(0, 2):
        p_old = p
        f = gibbs_pure_water - chem_potential_water_t_exact(SA, t, p_old)
        # This is half way through the modified N-R method.
        p = p_old - f / df_dp
        p_mean = 0.5 * (p + p_old)
        df_dp = -db2Pascal * (gibbs(0, 0, 1, SA, t, p_mean) -
                              SA * gibbs(1, 0, 1, SA, t, p_mean))
        p = p_old - f / df_dp
    # After two iterations though the modified Newton-Raphson technique the
    # maximum error is 6x10^-12 dbar.
    # Osmotic pressure of seawater in dbar.
    return p - pw 
@match_args_return
[docs]def pot_rho_t_exact(SA, t, p, p_ref=0):
    """
    Calculates potential density of seawater.
    Parameters
    ----------
    SA : array_like
        Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    p_ref : int, float, optional
        reference pressure, default = 0
    Returns
    -------
    pot_rho : array_like
              potential density  [kg m :sup:`-3`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.pot_rho_t_exact(SA, t, p)
    array([ 1021.79814581,  1022.05248442,  1023.89358365,  1026.66762112,
            1027.10723087,  1027.40963126])
    >>> gsw.pot_rho_t_exact(SA, t, p, p_ref=1000)
    array([ 1025.95554512,  1026.21306986,  1028.12563226,  1031.1204547 ,
            1031.63768355,  1032.00240412])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See section 3.4.
    """
    pt = pt_from_t(SA, t, p, p_ref=p_ref)
    return rho_t_exact(SA, pt, p_ref) 
@match_args_return
[docs]def rho_t_exact(SA, t, p):
    """
    Calculates in situ density of seawater from Absolute Salinity and in
    situ temperature.
    Parameters
    ----------
    SA : array_like
        Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    rho_t_exact : array_like
        in situ density [kg m :sup:`-3`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.rho_t_exact(SA, t, p)
    array([ 1021.84017319,  1022.26268993,  1024.42771594,  1027.79020181,
            1029.83771473,  1032.00240412])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See section 2.8.
    """
    return 1. / gibbs(n0, n0, n1, SA, t, p) 
@match_args_return
[docs]def SA_from_rho_t(rho, t, p):
    return None 
@match_args_return
[docs]def SA_from_rho_t_exact(rho, t, p):
    """
    Calculates the Absolute Salinity of a seawater sample, for given values
    of its density, in situ temperature and sea pressure (in dbar).
    One use for this function is in the laboratory where a measured value of
    the in situ density :math:`\rho` of a seawater sample may have been made at
    the laboratory temperature :math:`t` and at atmospheric pressure :math:`p`.
    The present function will return the Absolute Salinity SA of this seawater
    sample.
    Parameters
    ----------
    rho : array_like
          in situ density [kg m :sup:`-3`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    Notes
    -----
    This is expressed on the Reference-Composition Salinity Scale of
    Millero et al. (2008).
    After two iterations of a modified Newton-Raphson iteration,
    the error in SA is typically no larger than
    2 :math:`^\times` 10 :sup:`-13` [g kg :sup:`-1`]
    Examples
    --------
    >>> import gsw
    >>> rho = [1021.839, 1022.262, 1024.426, 1027.792, 1029.839, 1032.002]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.SA_from_rho_t_exact(rho, t, p)
    array([ 34.71022966,  34.89057683,  35.02332421,  34.84952096,
            34.73824809,  34.73188384])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See section 2.5.
    .. [2] Millero, F. J., R. Feistel, D. G. Wright, and T. J. McDougall, 2008:
       The composition of Standard Seawater and the definition of the
       Reference-Composition Salinity Scale, Deep-Sea Res. I, 55, 50-72.
    """
    v_lab = np.ones_like(rho) / rho
    v_0 = gibbs(n0, n0, n1, 0, t, p)
    v_120 = gibbs(n0, n0, n1, 120, t, p)
    # Initial estimate of SA.
    SA = 120 * (v_lab - v_0) / (v_120 - v_0)
    Ior = np.logical_or(SA < 0, SA > 120)
    # Initial estimate of v_SA, SA derivative of v
    v_SA = (v_120 - v_0) / 120
    for k in range(0, 2):
        SA_old = SA
        delta_v = gibbs(n0, n0, n1, SA_old, t, p) - v_lab
        # Half way the mod. N-R method (McDougall and Wotherspoon, 2012)
        SA = SA_old - delta_v / v_SA
        SA_mean = 0.5 * (SA + SA_old)
        v_SA = gibbs(n1, n0, n1, SA_mean, t, p)
        SA = SA_old - delta_v / v_SA
    SA[Ior] = ma.masked
    return SA 
@match_args_return
[docs]def sigma0_pt0_exact(SA, pt0):
    """
    Calculates potential density anomaly with reference sea pressure of
    zero (0) dbar.  The temperature input to this function is potential
    temperature referenced to zero dbar.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    pt0 : array_like
          potential temperature [:math:`^\circ` C (ITS-90)]
          with respect to a reference sea pressure of 0 dbar
    Returns
    -------
    sigma0_pt0_exact : array_like
                       potential density anomaly [kg m :sup:`-3`]
                       respect to a reference pressure of 0 dbar
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> pt0 = [28.7832, 28.4209, 22.7850, 10.2305, 6.8292, 4.3245]
    >>> gsw.sigma0_pt0_exact(SA, pt0)
    array([ 21.79814475,  22.05251193,  23.89356369,  26.66762521,
            27.10723499,  27.4096324 ])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See Eqn. (3.6.1).
    """
    SA = np.maximum(SA, 0)  # Ensure that SA is non-negative.
    x2 = sfac * SA
    x = np.sqrt(x2)
    y = pt0 * 0.025
    g03 = (100015.695367145 +
           y * (-270.983805184062 +
           y * (1455.0364540468 +
           y * (-672.50778314507 +
           y * (397.968445406972 +
           y * (-194.618310617595 +
           y * (63.5113936641785 -
           y * 9.63108119393062)))))))
    g08 = x2 * (-3310.49154044839 +
                x * (199.459603073901 +
                x * (-54.7919133532887 +
                x * 36.0284195611086 -
                y * 22.6683558512829) +
                y * (-175.292041186547 +
                y * (383.058066002476 +
                y * (-460.319931801257 +
                y * 234.565187611355)))) +
                y * (729.116529735046 +
                y * (-860.764303783977 +
                y * (694.244814133268 +
                y * (-297.728741987187)))))
    # The above code is exactly the same as the following two lines of code.
    # sigma0_pt_exact = rho_t_exact(SA, pt0, 0.) - 1000
    return 100000000. / (g03 + g08) - 1000.0 
@match_args_return
[docs]def sound_speed_t_exact(SA, t, p):
    """
    Calculates the speed of sound in seawater.
    The speed of sound in seawater :math:`c` is given by:
    .. math::
        c(SA, t, p) = \sqrt{ \partial P  / \partial \rho |_{SA,\eta}} =
                      \sqrt{(\rho\kappa)^{-1}} =
                      g_P \sqrt{g_{TT}/(g^2_{TP} - g_{TT}g_{PP})}
    Note that in these expressions, since sound speed is in m s :sup`-1` and
    density has units of kg m :sup:`-3` it follows that the pressure of the
    partial derivatives must be in Pa and the isentropic compressibility
    :math:`kappa` must have units of Pa :sup:`-1`. The sound speed c produced
    by both the SIA and the GSW software libraries (appendices M and N) has
    units of m s :sup:`-1`.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    sound_speed : array_like
                  speed of sound in seawater [m s :sup:`-1`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.sound_speed_t_exact(SA, t, p)
    array([ 1542.61580359,  1542.70353407,  1530.84497914,  1494.40999692,
            1487.37710252,  1483.93460908])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See Eqn. (2.17.1)
    """
    return (gibbs(n0, n0, n1, SA, t, p) * np.sqrt(gibbs(n0, n2, n0, SA, t, p) /
            (gibbs(n0, n1, n1, SA, t, p) ** 2 - gibbs(n0, n2, n0, SA, t, p) *
            gibbs(n0, n0, n2, SA, t, p)))) 
@match_args_return
[docs]def specvol_anom_t_exact(SA, t, p):
    """
    Calculates specific volume anomaly from Absolute Salinity, in situ
    temperature and pressure, using the full TEOS-10 Gibbs function.
    The reference value of Absolute Salinity is SSO and the reference value of
    Conservative Temperature is equal to 0 :math:`^\circ` C.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    specvol_anom_t_exact : array_like
        specific volume anomaly  [m :sup:`3` kg :sup:`-1`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.specvol_anom_t_exact(SA, t, p)
    array([  6.01044463e-06,   5.78602432e-06,   4.05564999e-06,
             1.42198662e-06,   1.04351837e-06,   7.63964850e-07])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See Eqn. (3.7.3)
    """
    pt_zero = pt_from_CT(SSO, 0)
    t_zero = pt_from_t(SSO, pt_zero, 0, p)
    return (gibbs(n0, n0, n1, SA, t, p) -
            gibbs(n0, n0, n1, SSO, t_zero, p)) 
@match_args_return
[docs]def specvol_t_exact(SA, t, p):
    """
    Calculates the specific volume of seawater.
    Parameters
    ----------
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    p : array_like
        pressure [dbar]
    Returns
    -------
    specvol : array_like
              specific volume [m :sup:`3` kg :sup:`-1`]
    Examples
    --------
    >>> import gsw
    >>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
    >>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
    >>> p = [10, 50, 125, 250, 600, 1000]
    >>> gsw.specvol(SA, t, p)
    array([ 0.00097862,  0.00097822,  0.00097616,  0.00097297,  0.00097104,
            0.000969  ])
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See section 2.7.
    """
    return gibbs(n0, n0, n1, SA, t, p) 
@match_args_return
[docs]def t_from_rho_exact(rho, SA, p):
    """
    Calculates the in-situ temperature of a seawater sample, for given
    values of its density, Absolute Salinity and sea pressure (in dbar).
    Parameters
    ----------
    rho : array_like
          in situ density [kg m :sup:`-3`]
    SA : array_like
         Absolute salinity [g kg :sup:`-1`]
    p : array_like
        pressure [dbar]
    Returns
    -------
    t : array_like
        in situ temperature [:math:`^\circ` C (ITS-90)]
    t_multiple : array_like
                 in situ temperature [:math:`^\circ` C (ITS-90)]
    Notes
    -----
    At low salinities, in brackish water, there are two possible temperatures
    for a single density.  This program will output both valid solutions
    (t, t_multiple), if there is only one possible solution the second variable
    will be set to NaN.
    Examples
    --------
    TODO
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp.
    """
    # alpha_limit is the positive value of the thermal expansion coefficient
    # which is used at the freezing temperature to distinguish between I_salty
    # and I_fresh.
    alpha_limit = 1e-5
    # rec_half_rho_TT is a constant representing the reciprocal of half the
    # second derivative of density with respect to temperature near the
    # temperature of maximum density.
    rec_half_rho_TT = -110.0
    t_a, t_b = None, None
    t = np.zeros_like(SA) * np.NaN
    t_multiple = np.zeros_like(SA) * np.NaN
    I_SA = np.logical_or(SA < 0, SA > 42)
    I_p = np.logical_or(p < -1.5, p > 12000)
    I_SA_p = np.logical_or(I_SA, I_p)
    SA[I_SA_p] = ma.masked
    rho_40 = rho_t_exact(SA, 40 * np.ones_like(SA), p)
    SA[(rho - rho_40) < 0] = ma.masked
    t_max_rho = t_maxdensity_exact(SA, p)
    rho_max = rho_t_exact(SA, t_max_rho, p)
    rho_extreme = rho_max.copy()
    t_freeze = t_freezing(SA, p)  # Assumes seawater is saturated with air.
    rho_freezing = rho_t_exact(SA, t_freeze, p)
    # Set rhos greater than those at the freezing point to be equal to the
    # freezing point.
    I_fr_gr_max = (t_freeze - t_max_rho) > 0
    rho_extreme[I_fr_gr_max] = rho_freezing[I_fr_gr_max]
    SA[rho > rho_extreme] = ma.masked
    SA[np.isnan(SA * p * rho)] = ma.masked
    alpha_freezing = alpha_wrt_t_exact(SA, t_freeze, p)
    I_salty = alpha_freezing > alpha_limit
    if I_salty.any():
        t_diff = 40. * np.ones_like(I_salty) - t_freeze[I_salty]
        top = (rho_40[I_salty] - rho_freezing[I_salty] +
               rho_freezing[I_salty] * alpha_freezing[I_salty] * t_diff)
        a = top / (t_diff ** 2)
        b = -rho_freezing[I_salty] * alpha_freezing[I_salty]
        c = rho_freezing[I_salty] - rho[I_salty]
        sqrt_disc = np.sqrt(b ** 2 - 4 * a * c)
        # The value of t[I_salty] is the initial guess `t` in the range of
        # I_salty.
        t[I_salty] = t_freeze[I_salty] + 0.5 * (-b - sqrt_disc) / a
    I_fresh = alpha_freezing <= alpha_limit
    if I_fresh.any():
        t_diff = 40 * np.ones_like[I_fresh] - t_max_rho[I_fresh]
        factor = ((rho_max[I_fresh] - rho[I_fresh]) / (rho_max[I_fresh] -
                                                       rho_40[I_fresh]))
        delta_t = t_diff * np.sqrt(factor)
        I_fresh_NR = delta_t > 5
        if I_fresh_NR.any():
            t[I_fresh[I_fresh_NR]] = (t_max_rho[I_fresh[I_fresh_NR]] +
                                      delta_t[I_fresh_NR])
        I_quad = delta_t <= 5
        if I_quad.any():
            t_a = np.zeros_like(SA) * np.NaN
            # Set the initial value of the quadratic solution roots.
            t_a[I_fresh[I_quad]] = (t_max_rho[I_fresh[I_quad]] +
                                    np.sqrt(rec_half_rho_TT *
                                            (rho[I_fresh[I_quad]] -
                                             rho_max[I_fresh[I_quad]])))
            for Number_of_iterations in range(0, 6):
                t_old = t_a
                rho_old = rho_t_exact(SA, t_old, p)
                factorqa = (rho_max - rho) / (rho_max - rho_old)
                t_a = t_max_rho + (t_old - t_max_rho) * np.sqrt(factorqa)
            t_a[t_freezing - t_a < 0] = ma.masked
            t_b = np.zeros_like(SA) * np.NaN
            # Set the initial value of the quadratic solution routes.
            t_b[I_fresh[I_quad]] = (t_max_rho[I_fresh[I_quad]] -
                                    np.sqrt(rec_half_rho_TT *
                                            (rho[I_fresh[I_quad]] -
                                             rho_max[I_fresh[I_quad]])))
            for Number_of_iterations in range(0, 6):
                t_old = t_b.copy()
                rho_old = rho_t_exact(SA, t_old, p)
                factorqb = (rho_max - rho) / (rho_max - rho_old)
                t_b = t_max_rho + (t_old - t_max_rho) * np.sqrt(factorqb)
                # After seven iterations of this quadratic iterative procedure,
                # the error in rho is no larger than 4.6x10^-13 kg/m^3.
            t_b[t_freezing - t_b < 0] = ma.masked
            # Begin the modified Newton-Raphson iterative method, which will
            # only operate on non-masked data.
    v_lab = np.ones_like(rho) / rho
    v_t = gibbs(0, 1, 1, SA, t, p)
    for Number_of_iterations in range(0, 3):
        t_old = t.copy()
        delta_v = gibbs(0, 0, 1, SA, t_old, p) - v_lab
        t = t_old - delta_v / v_t  # Half way through the modified N-R method.
        t_mean = 0.5 * (t + t_old)
        v_t = gibbs(0, 1, 1, SA, t_mean, p)
        t = t_old - delta_v / v_t
    if t_a:
        t[~np.isnan(t_a)] = t_a[~np.isnan(t_a)]
    if t_b:
        t_multiple[~np.isnan(t_b)] = t_b[~np.isnan(t_b)]
    # After three iterations of this modified Newton-Raphson iteration,
    # the error in rho is no larger than 4.6x10^-13 kg/m^3.
    return t, t_multiple 
@match_args_return
[docs]def t_maxdensity_exact(SA, p):
    """
    Calculates the in-situ temperature of maximum density of seawater.
    This function returns the in-situ temperature at which the density of
    seawater is a maximum, at given Absolute Salinity, SA, and sea pressure, p
    (in dbar).
    Parameters
    ----------
    SA : array_like
        Absolute salinity [g kg :sup:`-1`]
    p : array_like
        pressure [dbar]
    Returns
    -------
    t_maxdensity_exact : array_like
        max in-situ temperature [:math:`^\circ` C]
    Examples
    --------
    TODO
    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
       of seawater - 2010: Calculation and use of thermodynamic properties.
       Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
       UNESCO (English), 196 pp. See section 3.42.
    """
    # The temperature increment for calculating the gibbs_PTT derivative.
    dt = 0.001
    t = 3.978 - 0.22072 * SA  # The initial guess of t_maxden.
    gibbs_PTT = 1.1e-8  # The initial guess for g_PTT.
    for Number_of_iterations in range(0, 3):
        t_old = t
        gibbs_PT = gibbs(n0, n1, n1, SA, t_old, p)
        # Half way through the mod. method (McDougall and Wotherspoon, 2012)
        t = t_old - gibbs_PT / gibbs_PTT
        t_mean = 0.5 * (t + t_old)
        gibbs_PTT = (gibbs(n0, n1, n1, SA, t_mean + dt, p) -
                     gibbs(n0, n1, n1, SA, t_mean - dt, p)) / (dt + dt)
        t = t_old - gibbs_PT / gibbs_PTT
    # After three iterations of this modified Newton-Raphson iteration, the
    # error in t_maxdensity_exact is typically no larger than 1x10^-15 deg C.
    return t 
if __name__ == '__main__':
    import doctest
    doctest.testmod()